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The role of experimentation in artificial
intelligence

By BRUCE G. BUCHANAN

Department of Computer Science, University of Pittsburgh,
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Intelligence is a complex, natural phenomenon exhibited by humans and many
other living things, without sharply defined boundaries between intelligent and
unintelligent behaviour. Artificial inteliigence focuses on the phenomenon of in-
telligent behaviour, in humans or machines. Experimentation with computer pro-
grams allows us to manipulate their design and intervene in the environmental
conditions in ways that are not possible with humans. Thus, experimentation
can help us to understand what principles govern intelligent action and what
mechanisms are sufficient for computers to replicate intelligent behaviours.
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Artificial intelligence (AI) has a long-range scientific goal of understanding the
nature of intelligence, merging the concepts of intelligence and mechanization
in intelligent machines. Although AI has intellectual roots in antiquity and in
rationalist and empiricist philosophies of the 17-19th centuries, it was not until
the last half of this century that AI could be studied experimentally. Turing’s
seminal paper of 1950 proposed an experimental test of intelligence in machines,
(more precisely, his operational test was an alternative to arguing the question of
whether machines can think) and working AI programs have been demonstrated
since 1957 (Feigenbaum & Feldman 1963). Henceforth, experimentation with Al
programs has added concreteness and precision to our reflection about the nature
of intelligence.

Every scientific discipline focuses on one or more natural phenomena; physics
focuses on the nature of matter, astronomy on the origins and composition of the
universe, biology on life, and so on. Al focuses on the phenomenon of intelligent
behaviour in humans and machines. Because computers are artefacts, Simon refers
to Al as a science of the artificial (Simon 1969), but he nevertheless views Al as
an empirical science (Newell & Simon 1976).

The term ‘artificial intelligence’ has been said to be a contradiction in terms
(see Boden (1977) for a discussion of this point). However, if one entertains the
possibility that computers might be the kinds of things that can be intelligent,
then it makes sense to ask how that might be brought about. One of the premises
of Alis that artefacts as well as living organisms can exhibit intelligent behaviour.
To deny the possibility of intelligence in machines is a definitional prejudice akin
to other chauvinistic biases that have limited our vision.
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154 B. G. Buchanan
Table 1. Characterization of two classes of problems (from Sternberg & Wagner 1993)

academic problems practical problems

formulated by someone else require problem recognition and formulation
well-defined ill-defined

complete information require information seeking

single correct answer multiple acceptable solutions

single method for obtaining answer multiple paths to solution

little or no intrinsic interest require motivation and personal involvement

disembedded from ordinary experience embedded in and require prior everyday experience

2. Intelligence, the subject matter of Al

Intelligence is a complex, natural phenomenon that is manifest without sharply
defined boundaries in humans and many other living things. Because the phe-
nomenon of intelligence is not well-defined, Turing sidestepped the issue of defin-
ing intelligence a priori. Psychologists, on the other hand, have proposed many
necessary conditions in the 150 or so different standardized tests of intelligence,
and use them to measure and rank people’s abilities. For this reason, the first
Ph.D. thesis in Al involving a running program (Evans 1968) focused on analogy
problems from a standardized college admissions test. Nearly all of the questions
on these standardized tests involve narrowly constrained problems carefully in-
sulated from complex interactions with the real world. These are referred to as
‘academic’ problems as opposed to ‘practical’ problems (Sternberg & Wagner
1993). The two classes are characterized in table 1.

Al researchers have selected problems that most people would say require some
intelligence, usually those more characteristic of academic problems than practical
ones. Some examples are analogy finding problems on intelligence tests (Evans
1968), algebra word problems (Bobrow 1968), cryptarithmetic puzzles (Newell &
Simon 1972), checkers (Samuel 1959), chess (Berliner 1978), memorizing nonsense
syllables (Feigenbaum 1961), block stacking (Winograd 1972; Sussman 1975),
logic puzzles like the missionaries and cannibals puzzle (Ernst & Newell 1969),
and default reasoning about zoo animals (Winston 1992).

Some of the more practical problems that have been used as vehicles for re-
search are manufacturing assembly by robots (Kak 1990), recognition of spoken
requests for information in a database (Woods & Kaplan 1971), scheduling man-
ufacturing operations (Fox & Smith 1984), organic chemical structure elucida-
tion (Lindsay et al. 1980), and medical diagnosis (Buchanan & Shortliffe, 1984).
(Many commercial applications of AI use the technology but do not contribute
directly to AI research. For some of these, see Scott & Klahr 1992, and previous
volumes.) However, even these problems do not have the degree of involvement, or
‘situatedness’, as problems that children and adults solve daily when unexpected
events force us to think.

In an empirical study on adults’ conceptions of intelligence (Berg & Sternberg

Phil. Trans. R. Soc. Lond. A (1994)
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Table 2. Some of the highest-ranked behaviours in each of three groups of intelligent behaviours
(from Berg & Sternberg 1992)

interest in and ability everyday competence verbal competence
to deal with novelty

analyses topics in new displays good commonsense displays the knowledge to
and original ways acts in a mature manner speak intelligently
interested in learning acts responsibly displays good vocabulary
new things interested in family and home life can draw conclusions from
open-minded to new ideas  adjusts to life situations information given
can learn and reason makes rational decisions is verbally fluent
with new kinds displays clarity of speech

displays curiosity
discovers new ideas

1992), 150 adults in New Haven were asked to list as many behaviours as they
could that characterized very intelligent or very unintelligent behaviour. Some
additional behaviours and characteristics were added from the psychology litera-
ture. Then a separate group was asked to rank these behaviours according to how
much intelligence each required, and the resultant rankings were clustered into
three groups. Some of the highest-ranked behaviours for each group are shown in
table 2.

Most of AI's demonstrable progress is in the category of verbal competence,
since that is where symbolic reasoning is placed (under ‘drawing conclusions’).
However, as the characteristics in this category have become common foci of Al
experiments and have become better understood, Al researchers have directed
their attention to the other two categories as well. (This is more true of the num-
bers of researchers than of the chronology of research. For example, McCarthy
was writing about common sense reasoning in 1958.) Interestingly, these char-
acteristically intelligent behaviours, especially those in the category of everyday
competence, apply more to practical problems than to academic ones. This is not
to say that early Al work on academic problems was at all irrelevant, as some have
claimed (Dreyfus & Dreyfus 1986). Rather it can be seen as many experiments
in controlled situations that were largely decoupled from the open-endedness,
randomness, and complexity of the real world. In the same sense, Galileo’s mea-
suring the times it took balls to roll down an inclined plane is simple but still
relevant to unlocking the secrets of gravitational attraction. With both phenom-
ena, gravity and intelligence, small experiments lay the groundwork for greater
understanding. AI, quite clearly, is still in a preliminary stage.

Some of the behavioural characteristics listed in the New Haven survey as
unintelligent are shown in table 3. From these lists, we can conclude that com-
puters exhibit, at best, very limited intelligence, in the 20th century. We can also
see right away that we do not want our intelligent machines to simulate human
reasoning faithfully, if that includes the unintelligent things we all do.

Phil. Trans. R. Soc. Lond. A (1994)
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156 B. G. Buchanan
Table 3. Unintelligent behaviour (from Berg & Sternberg 1992)

ignorant about current controversial issues

lacks depth of understanding

unable to carry on intelligent conversation

unable to comprehend simple routine tasks
displays illogical thought

does not analyse information

is not interested in gaining knowledge

does not take steps to grow intellectually and learn
does not want to work

3. Experimental methods in Al

Phenomena that occur in the natural world, such as electricity, gravity, com-
bustion, photosynthesis, genetic inheritance, disease, memory, aggression, and
many others, have been well studied through scientific observation and experi-
ment. A few of these interesting phenomena can only be studied through their
effects because they are not directly observable — as with black holes, geologic
change, and sub-atomic particles. Sometimes the phenomena are observable but
too large, too remote, or too complex to bring into the laboratory — as with or-
ganized crime, solar storms, or global warming. In these cases, the possibilities of
active experimentation are small, but passive observation and measurement are
still possible.

Sometimes the phenomenon can only be brought into the laboratory in a nat-
ural host, without an artefact; as colonies of mice or bacteria are used to study
disease in controlled environments. In these cases, experiments are limited to
altering the environment and inputs to the system, holding everything else as
constant as possible, and observing changes in the outputs. Sometimes, however,
it is possible to reproduce them with an artefact in the laboratory and perform
controlled experiments, as with electricity. Active experimentation can take place
in these cases through altering and controlling many aspects of the experimental
apparatus as well as its environment and the input to it.

These features of scientific phenomena are relative, however, and new tech-
nologies change our abilities to view phenomena directly and reproduce them.
Telescopes and microscopes, for example, enhanced scientists’ abilities to ob-
serve; electrical generators and the polymerase chain reaction, for example, gave
scientists new abilities to experiment. These are summarized in table 4.

An important question for Al is where the phenomenon of intelligence is prop-
erly placed in table 4. Before experimental psychologists brought subjects into the
laboratory, observation of intelligent behaviour was passive. Later, well-controlled
experiments were designed to relate changes in subjects’ responses to changes in
input conditions.

With computers, we can perform experiments that are not possible with peo-
ple. Starting with a problem that requires some intelligence by nearly everyone’s
account (e.g. diagnosing a patient’s disease) we design a mechanism that seems
plausible. Then we build a device (i.e. a program) that embodies that mechanism,

Phil. Trans. R. Soc. Lond. A (1994)
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Table 4. Two important dimensions of the phenomena studied by empirical science

intervention

manipulation passive observation active experimentation

(in Nature or laboratory) (usually in the laboratory)
naturally observe events as they occur change environment or input
occurring e.g. solar storms, organized crime e.g. inherited disease
reproducible  create conditions for events to manipulate fine structure,
in artefacts occur, measure them when they do measure responses

e.g. high energy physics, macro economics e.g. electromagnetism

and we run the device under many conditions. The program is the experimental
apparatus. It can be configured in any way we please; once configured it can be
lobotomized with no ethical misgivings. We can ask it to solve problems all day
and all night, we can see how well it performs on impossible tasks. We can add
individual facts or methods, and we can cause the subject to forget any of them
completely by simply removing them.

It is a fiction, of course, to cast experimental science into a simple procedure.
Nevertheless, most or all of the following steps are present in experimental science
and can be seen to be present in Al research as well.

. Start with a question.

. Formulate a hypothesis.

. Build a device (in Al, a program).

. Design and run experiments to test the hypothesis.

. Redesign the device (or the experiments or the hypothesis).
. Continue experimenting.

. Evaluate results of experiments.

. Generalize the results and generate new questions.

0 ~JO Uik Wk

In each experiment, two of the main issues to be addressed are: (i) How well
does the program work? (ii) Why does it work as well as it does, i.e., what
elements are responsible for its good and bad performance?

Part of the controversy surrounding Al seems to hinge on the extent to which
intelligence can be studied in the same ways as other natural phenomena that are
reproducible in experimental devices. Al researchers believe it can; critics move
the phenomena closer to disease or organized crime.

For example, there is a recent trend in philosophy to treat mind as embedded in
a larger environment than the body, to view intelligence as distributed among a
brain, a body, and the larger world these interact with. Intelligence, by this view,
is in the interaction more than in the brain or in an individual. (For an excellent
review of this model, see (Berg & Sternberg 1993), (Vera & Simon 1993), and
other articles in the same journal.)

John Haugeland (1993) uses an example of traveling from Berkeley to San Jose
to illustrate. Suppose there were a stable of horses in Berkeley in which each horse
knew the way to one of the neighbouring cities. Then to get to San Jose all the
intelligence Haugland needs is to pick the horse that knows the way to San Jose.

Phil. Trans. R. Soc. Lond. A (1994)
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He gets on, rides the horse to San Jose, and he gets off. Much of the intelligence
in knowing and following the route lies in the horse. Now substitute freeways for
horses. All Haugland has to do is pick the right freeway, get on, drive, and then
get off when the exit sign tells him to. Much of the intelligence is in the freeway,
he says.

However, this is not incompatible with AI at all. Just as people or insects
may derive much of their seeming intelligence from interacting with a complex
environment, so may computer systems (Simon 1969). How can it be otherwise
in a complex world in which every agent cannot survive without interacting with
other agents, with artefacts that other agents build, and with a natural world
that no one person can understand fully?

The claim that experimenting with software can reveal anything new about
intelligence has been questioned (Kukla 1991). The argument against it, in sim-
plified terms, is that the output of Al programs is completely derivable from the
program itself. Since all details of the program are known, the data points from
observation and experimentation add nothing to the derivations. Al programs, in
this argument, are closer to a set of logical axioms where the only truths to be
learned are necessary, but not empirical, truths. We cannot learn new empirical
truths by observing a machine whose operations follow necessarily from its pro-
gram. Therefore, we cannot learn anything new about the empirical phenomenon
of intelligence by studying software.

Without taking the whole argument into account here, the best succinct re-
sponse is with an analogy to experimentation in physics. Under a deterministic
view of the physical world, all observed data points of physics would also be deriv-
able from applying the laws of the universe to the initial conditions. Physicists
still construct devices to test hypotheses, however. When the devices work, the
resulting data confirm the hypotheses. When data from the devices contradict
the hypothesis, modifications are made; either to the hypothesis or to the device.
The same is true with software devices.

Another way to avoid this dilemma is to see that, even though the output of
a program may be completely determined by the input and the complete de-
scription of the program, the interesting question still remains of whether that
output is an intelligent response in that situation. By collecting data on many
responses we are in a position to say whether the program generally responds
intelligently. For example, when MYCIN reached a correct diagnosis of strepto-
coccal meningitis for a patient, we claimed it was behaving intelligently. When
it made an incorrect diagnosis, we asked whether it was behaving stupidly or
whether it was still a plausible, intelligent response, even though wrong. From
many data points we confirmed that the program could diagnose causes of bac-
terial meningitis and construct therapy plans as well as experienced infectious
disease experts (Buchanan & Shortliffe 1984).

However, we wanted to generalize further and explain why it performed as
well as it did and what general architectural features others could use to design
similarly intelligent programs. The big question for an Al program is not so
much what its output will be. It is whether that output constitutes an intelligent
response and, if it does, which parts and which interactions are responsible for
the intelligence in the response. As might be expected, with MYCIN there was not
a simple answer. A few of the components of our answer, though, can be stated
simply.

Phil. Trans. R. Soc. Lond. A (1994)
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(a) The detailed knowledge of meningitis, contained in about 500 conditional
rules in MYCIN’s knowledge base, was essential.

(b) An important ingredient of success was the fact that the number of diag-
nostic hypotheses was fixed and small.

(c¢) Another important ingredient was MYCIN’s evidence gathering method. For
example, MYCIN declined to offer a diagnosis when there was insufficient evidence
for any alternative, rather than suggest the best of several bad choices.

(d) The details of the calculus for propagating uncertainty through reasoning
chains were less important than the fact that uncertainty was managed explicitly.

(e) Little more logical machinery than modus ponens was necessary for good
performance.

(f) Some very particular rules covered only rare exceptions but were necessary
to avoid stupid mistakes.

(g9) Explicit strategies made MYCIN’s reasoning more understandable but could
be compiled into the rule set without loss of accuracy.

Principles like these were synthesized from an analysis of many variations of
MYCIN. They were then embedded in a high-level ‘shell’ system that could be
instantiated with knowledge of other problem areas and would behave in the same
general way as MYCIN. This system, called EMYCIN (VanMelle 1980), became the
basis for many commercial expert systems which further confirmed the general
principles.

Each program is a device that can be used for multiple experiments. By varying
the inputs systematically we can observe and analyse changes to the outputs
in order to understand the strengths and limits of the architectural principles
governing each program’s behaviour. When the internal details of the program are
also modified, however, the experiments become finer-grained (Buchanan 1988).
Insofar as a program exhibits any intelligence at all, both the large-scale and the
fine-grained experiments can help us discover its causal and inhibitive factors.

Although there are relatively few sets of systematic experiments described in
the AI literature, there are numerous examples of rather unsystematic variation
and experimentation with methods and architectural principles resulting in gen-
eral lessons of interest to the research community. Some of the results have also
been successfully transferred to the worlds of commerce, manufacturing, military,
and health (see, for example, Scott & Klahr 1992, and other volumes in this se-
ries). The set of experiments with the MYCIN program (Buchanan & Shortliffe
1984), guided the design and implementation of many rule-based expert systems
and, we believe, elucidated some of the strengths and limits of rule-based archi-
tectures as computational models of intelligent decision making.

AT needs more systematic studies, data collection, and analysis leading to re-
finements in our hypotheses about the power, generality, and scope of applicability
of our methods.

4. An example from machine learning

Machine learning has been an active research area for over 40 years and is
often said to be an essential ingredient of machine intelligence (Minsky 1963).
Its origins can be found in adaptive control theory (Wiener 1948). It has been,

Phil. Trans. R. Soc. Lond. A (1994)
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Table 5. Characteristics of the data in most practical problems

characteristic example

incomplete not all relevant subclasses are represented,;

it is not even known what features are relevant

redundant several features are manifestations of the same
underlying phenomenon

noisy laboratory measurements may be perturbed by systematic

or random errors during data collection

erroneous laboratory tests are not fully reproducible

and continues to be, addressed both theoretically and experimentally (Langley
1988). The work in our laboratory is experimental in two senses. First, we are
testing the hypothesis that heuristic search is a powerful enough architecture
for an inductive learning program that new and interesting generalizations can
be found using it. Second, we are using an existing inductive learning program
to experiment with datasets provided by different collaborators to help them
find interesting classification rules. We usually start with a problem posed by a
collaborator of the form: ‘Are there general rules that define membership in class
X7

For example, wet are currently investigating the question, ‘Can we learn a
set of classification rules (a concept definition) for carcinogenic chemicals?’ (We
are first looking at carcinogenic activity in rodents because there are more data
available than for humans.) Not only is this an important public health question,
but it challenges existing machine learning programs because there are so few
chemicals with a full set of test values available, the features overlap and are not
independent, and there are errors in the data (summarized in table 5).

Our working hypothesis is that the RL learning program (Provost et al. 1993)
developed in our laboratory, is sufficient for learning with these data. A little
more generally, the hypothesis is that the heuristic search architecture of RL is
sufficient for this and many such problems of inductive generalization. RL is an
induction program in that it uses the features of particular objects — individual
chemicals in this case — to find general relations that define a target concept class,
in this case a definition of ‘carcinogen in rodents’ or ‘non-carcinogen in rodents’.
It may be briefly described as a heuristic search program that searches a space of
rules to find a definition of the concept class, where its search is guided by prior
knowledge as well as by the data. The overall data flow is shown in figure 1.

Using a generator of syntactically possible rules that define a total rule space,
RL explores the space heuristically. It starts from rules with a single feature
and adds one feature at a time to partial rules that look most promising. Each

t ‘We’ includes Mr Yongwon Lee, and Dr Foster Provost, Dr Rich Ambrosino, and Dr John Aronis
of the Intelligent Systems Laboratory, in collaboration with Dr Herb Rosenkranz and members of his
laboratory in the Department of Environmental and Occupational Health. The preliminary results shown
here were generated by Yongwon Lee.
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explicit bias

test training (ﬁ:g:ﬂ]
cases examples model

inference
engine

rules

classification
of each
new case

Figure 1. The overall flow of information for RL. RL uses a copy of the inference engine to make
predictions for training examples and compares the prediction against the known classifications.
The term ‘bias’ in an induction system refers to the choices made in designing, implementing
and initializing an inductive learning system that lead the system to learn one generalization
instead of another. The partial domain model is knowledge about the domain that RL can take
as given which will help guide its search through the rule space.

partial rule is matched against the training cases to see how many of the positive
cases are correctly predicted and how many of the negative cases are incorrectly
predicted to be members of the target class, thus providing statistical guidance
to the search. In addition, semantic relations among features that are specified
in the partial domain theory are taken into account in exploring the rule space.

RL is one of several AI machine learning programs that learn inductively. (For
an overview of recent work, see Michalski & Tecuci 1994.) Although it shares
several characteristics with one or more other programs, it is distinguished by its
flexibility, as summarized in table 6.

Working in collaboration with a toxicologist, we designed a set of experiments
to test our hypothesis that RL was sufficient to learn rules in this domain. Note
that we were also testing a hypothesis that the descriptive features from relatively
inexpensive tests we were using to characterize the chemicals were a sufficient set
to predict carcinogenic activity as well as the very expensive tests now used. One
of the reasons this problem is important is that no such set is known at present.
Thus any learning program used to learn rules must be flexible enough to accept
different sets of descriptive features easily. One of the hypotheses we are testing
is that the RL framework is flexible enough to allow many changes to the feature
set, parameters, and assumptions that drive induction.

One question we are investigating, for example, is how an inference engine can
most effectively use multiple predictions from a set of rules. If a new chemical is
described as having features A1-A10, then what is the correct interpretation of
the following rule set,

R1 Al & A2 — carcinogenic (0.5),
R2 A2 & A3 — carcinogenic (0.8),
R3 A9 & A10 — not carcinogenic (0.8),

Phil. Trans. R. Soc. Lond. A (1994)
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Table 6. Characteristics of the RL induction program

a space of possible rules is defined by a syntactic generator of rules

the search for plausible rules in this space is guided by prior knowledge
(in a partial domain theory) as well as by statistics

objects may be described using symbolic features as well as numeric features
data are not assumed to be 100% reliable
the definition of the target class may be nonlinear

the system is modular and flexible

where the numbers associated with the rules are measures of evidential support
determined by RL during learning.t Many sets of rules were learned under dif-
ferent conditions. Each set was applied to test data using different methods of
combining evidence. Preliminary results are shown in table 7. From this small set
of experiments we concluded that a simple voting scheme would be most effective
in this domain. We have run many such experiments and have modified the as-
sumptions and parameters that drive RL in this domain. We have also redesigned
RL to broaden its scope. It was originally designed as a simple induction system
to be run once (or a small number of times) to find classification rules. In the
domain of chemical toxicity, as well as others, we found that one of the primary
values of an induction tool is to assist scientists in exploring their own assump-
tions and their hypotheses about appropriate features to use in characterizing
the data. Thus RL is becoming a general tool for exploration of data that are not
yet well understood.

These explorations are not finished by any means. However, preliminary re-
sults (Lee et al. 1994) are encouraging for both toxicology and machine learning.
We have shown, for example, that it is possible to improve the predictive power
of the short-term assay that has been proposed as best, by including two other
short-term assays, two toxicity dose measurements, and four physical properties,
all of which are obtainable without great cost. One of the 25 rules learned is
shown in table 8.

From the perspective of machine learning, we are demonstrating that RL can
find (and represent) nonlinear relationships in data. We are also demonstrating
(although it does not show here) that RL is flexible enough to undertake dozens
of investigations around the same topic but with very different assumptions.

5. Conclusion

In AI we are looking at many different aspects of intelligence and building
experimental programs that exhibit those aspects. We are still confined to small
domains and to small tasks within those domains, but we believe we are mov-
ing toward greater understanding of how programs can behave intelligently in

1 Evidential support is calculated as the simple ratio of the number of positive predictions divided by
the total number of predictions. This, too, is open to experimentation.
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Table 7. Predictive accuracy of learned rules with different evidence gathering methods
(Abbreviated results from experiments reported in Lee et al. (1994).)

test set simple voting weighted voting single best rule

1 65.2 63.5 62.2
2 64.6 63.9 62.3
3 64.4 63.7 62.2
4 62.5 61.2 57.1
5 61.5 61.5 58.7
6 58.5 59.3 55.7
7 61.9 62.7 53.2
8 62.4 60.4 55.2
9 60.6 62.8 56.5
10 63.1 60.5 55.2
average 62.5 61.9 57.8

Table 8. A sample rule from RL’s examination of data on the classification of chemicals as car-
cinogenic or mon-carcinogenic in rodents, using the physical properties and results of short-term
assays as features

(The best rule proposed in the literature — that a chemical is carcinogenic in rodents if and
only if the Salmonella genotoxicity assay is positive — results in 55.7% predictive accuracy. On
a test set of 15 chemicals for which the Salmonella assay is negative, the 25 learned rules have
an overall predictive accuracy of 80%. Taken from Lee et al. (1994).)

IF: the Salmonella genotoxicity assay is negative
AND the chromosomal aberrations assay is positive
AND the log of water-octanol partition coefficient is greater than 3.3
THEN: the chemical is carcinogenic in rodents

True positive rate = 29.0% (20/69)
False positive rate 3.0% (2/66)
Positive predictive value = 90.9% (20/22)

increasingly more complex situations. Critics argue that intelligence lies only in
the whole context of living successfully in the world; that it is nonsense to sepa-
rate intelligence on academic problems from practical intelligence (e.g. (Dreyfus
& Dreyfus 1986)). Most of us in A, on the other hand, take it as an empirical
question whether the mechanisms that are designed and analysed one at a time
can be combined into agents that are more than the sum of their parts (e.g.
(Newell & Simon 1976)).

The enterprise of understanding the nature of intelligence can seem overwhelm-
ingly complicated unless we continue to work incrementally, and have conceptu-
ally simple models guiding us. In the early days of wireless radio, Einstein was

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

\
A
[\
N

A

a
//\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
i\

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

164 B. G. Buchanan

asked to explain how it worked. He said we should first think about sending tele-
grams over wires; that’s like having a large cat stretching over a large area so that
when you pull its tail in New York its head meows in Los Angeles. ‘And radio
operates exactly the same way’, he said, ‘The only difference is that there is no
cat.” (Quoted in Laquey 1993.) Al is still in its early days. However, we are past
the very early stage where the best analogy about Al was that Al in computers
is just like human intelligence, but without the human. Progress is the result of
better methods and better understanding; these result from experimentation.

I am particularly grateful to Yongwon Lee, Foster Provost and John Aronis for carrying out the
experiments with RL reported here. I also thank Alan Bundy (University of Edinburgh), and
Diana Forsythe (University of Pittsburgh) for pointing out particularly opaque parts of earlier
drafts, and E.A. Feigenbaum (Stanford University) and members of the Intelligent Systems
Laboratory (University of Pittsburgh) for many interesting and provocative discussions on the
topics discussed here. This work was supported in part by the National Library of Medicine and
by the W. M. Keck Foundation.
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Discussion

H. HENDRIKS-JANSEN (University of Susser, U.K.). Isn’t Professor Buchanan
worried that the choice of representations is imposed by the programmer, not
developed by the demands of the problem? If Al systems were embodied, the
demands of sensor-motor coordination would deeply affect how the system rep-
resented things.

B. G. BUcHANAN. I agree that the representations might be different in that
case. But I think that’s irrelevant to the applications I mentioned.

T. AppIs (University of Reading, U.K.). A key problem in classical Al is how
to define the distinctions used to describe the world. Robots interacting with
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the world discover their own distinctions. Classical AI works with pre-defined
descriptions.

B. G. BUcHANAN. The AI systems I’ve described are purely cognitive. They
interact with a sub-set of the world, but in a rich way. I disagree that robotics
is the only way we can go. Despite the limitation you mention, Al-methods can
be useful. But there is also considerable work within the classical paradigm on
automatically extending the set of features given to a program, much of it under
the name “constructive induction”.
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